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Synopsis 

A theory which has been developed to account for the effects of concentration on the equivalent 
hydrodynamic volumes of dissolved polymers has been combined with a statistical mechanical 
relation for the virial coefficients of dilute suspensions of rigid spheres. With a scaling factor for 
solvent goodness, osmotic pressures of polymer solutions can be predicted with good accuracy. The 
input parameters needed are the number-average molecular weight of the polymer sample and its 
intrinsic viscosity in the solvent of interest, as well as its intrinsic viscosity under theta conditions. 
The intrinsic viscosities can be estimated with sufficient accuracy from tabulated Mark-Houwink 
coefficients. The model developed contains no adjustable parameters. Colrqarisons of predicted 
and reported experimental osmotic pressures are presented, and a method for prediction of second 
virial coefficients is described. 

INTRODUCTION 

This article describes a method for predicting the osmotic pressure of polymer 
solutions from a knowledge of the average molecular weight of the polymer and 
its intrinsic viscosity in the particular solvent. The model presented here pro- 
duces estimated osmotic pressure data which agree well with experimental values, 
and it is a straightforward matter to calculate second virial coefficients from these 
simulated points by the same methods which are applied to real experimental 
osmotic pressure values. 

The theory used cannot possibly accord with all the properties of real polymers. 
Its use is justified essentially by its predictive ability and convenience. Essen- 
tially, the present method involves a combination of the statistical mechanical 
derivation of Zimm’ for the second virial coefficient and the Rudin model2 for 
the concentration dependence of the hydrodynamic volume of a solvated 
polymer. 

The relation used here between hydrodynamic volume and virial coefficient 
is based on a derivation1 for a dilute suspension of hard spheres. This is 
equivalent to what is now a standard elementary treatment in the statistical 
mechanics of gases, where it is sometimes labeled a “restrictive, primitive model”3 
because it handles the interactions of hard spheres, which all have uniform di- 
ameter. 

An earlier report from this laboratory4 described predictions of second virial 
coefficients using an earlier version5 of the hydrodynamic volume-concentration 
model. The theory in this article is simpler, less empirical, and more widely 
applicable. 
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THEORY 

The hydrodyamic volume of a polymer molecule in solution is denoted U E ,  
where u is the volume of the unsolvated molecule and E is a concentration-de- 
pendent, dimensionless swelling factor. A t  infinite dilution, E equals a: in Flory’s 
termsS6 The hydrodynamic volume is assumed to decrease from U E  at  infinite 
dilution to u at a critical concentration, c,. For any intermediate concentration, 
the hydrodynamic volume is given by2 

(1) 

where [77] is intrinsic viscosity (cm3/g), [7330 is intrinsic viscosity of the polymer 
in the theta condition (cm3/g), M is molecular weight of the polymer, c is con- 
centration (g/cm3), and No = Avogadro’s number. 

4 R [ q i ~  
LIE = 

9.3 X loz4 + 4~Noc([q]  - [q]e) 

The critical concentration, c,, is defined by 

and c = 1 for any c I c X .  
Zimml has derived the following expression for the osmotic second virial 

coefficient, A;, of a dilute suspension of uniform, rigid spheres with diameter 
d: 

Since U E  is the equivalent hydrodynamic volume of a polymer molecule in solu- 
tion, we can write eq. (3) as 

Substituting eq. (1) for U E  into eq. (3), we obtain 

This expression enables us to calculate a value of A; for each concentration of 
the polymer solution. Note that the virial coefficients in the statistical me- 
chanical theory are independent of c~ncentration.~,~ This is not so in the present 
application because E in eq. (4) is an inverse function of concentration for 0 I 
c 5 c,. A; here is of course different from Az,  the conventional second virial 
coefficient, which is defined to be independent of concentration over the ex- 
perimental range. 

Equation (5) permits the calculation of the osmotic pressure, R, of a polymer 
solution with concentration c. This follows from 

The virial expression in eq. (6) follows from the relation between the third and 
second virial coefficients in the hard sphere model.7 The second virial coefficient, 
Aa, can be estimated by the conventional method of plotting calculated (r/c)lI2 
values vs. c. 
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The approach described is not entirely satisfactory because it does not produce 
a zero value for A2 when the polymer is dissolved in a theta solvent. This can 
be remedied by multiplying A; in eq. (5) by the scaling factor (1 - [&)/[q] .  The 
final expression for A ;  is then 

(5') 

Equations (5') and (6) give good predictions of osmotic pressures of polymer 
solutions. It is necessary to know the polymer concentration and an average 
molecular weight of the sample as well as to be able to calculate [&I and[q] in the 
particular solvent. The theory contains no adjustable parameters. 

167~ [ ~ N O  -- 1111 B A; = 
Mf9.3 X + 4rNoc([vI - [ 0 ] 0 ) ] [ ~  [ T I  1 

RESULTS 

In order to compare the present theory with exerimental results, it is necessary 
to examine the conditions under which the various equations are applicable. 
Firstly, the polymer samples used should be sharp fractions. Secondly, as os- 
motic pressures are calculated from eq. (6), the results will only be valid at low 
concentrations or to a good approximation when ( T / c )  < 3(7~ /c )o .~  

Figures 1 to 7 compare the experimental results obtained from the various 
sources cited with osmotic pressures calculated using eqs. (5') and (6). Intrinsic 
viscosities were calculated from the Mark-Houwink equation 

[q] = KM" (7) 

[77],9 = KBMO.~ (8) 

The Mark-Houwink constants employed are listed in Table I. Only polymer- 

and 

3001 d 

I C, '0.23 

0 0. I 0.2 0.3 
C X l O  g / c m 3  

Fig. 1. Osmotic pressure results for 540,000 an PS in toluene.8 In Figs. 1 through 7, circles are 
experimental points and the lines are predicted from eqs. (5') and (6). 
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C, = 0.23 

I I +  I 
0 0.1 0.2 0.3 

C X I O  g/cm3 

Fig. 2. Osmotic pressure results for 540,000 a,, PS in MEK.g 

solvent systems in which the appropriate Mark-Houwink constants are available 
have been used in the present study. Since the requirement of sharp fractions 
is almost impossible to satisfy in practice, the overall results can be seen to be 
quite good in most cases for ( n / c )  < 3( 7r/c)o. 

5 ’I, 20 

0 

0 

c 6 8 
0 2 4 

c x 102 p/cm3 

Fig. 3. Osmotic pressure results for 90,000 a,, PIB in cycl~hexane.~ 
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Fig. 4. Osmotic pressure results for 166,000 an PMMA in acetone.1° 

DISCUSSION 

The procedures described in this article appear to give good predictions for 
reduced osmotic pressures of polymer solutions. The input parameters required 
are the molecular weight of the polymer and its intrinsic viscosity in the solvent 
of interest as well as its intrinsic viscosity under theta conditions. 

Other theories that are capable of calculating osmotic pressures, such as the 
Flory-Huggins theory6 and the Fixman method,lg require thermodynamic pa- 
rameters which will not be as readily available. The Flory-Huggins theory has 
been reported to give poor agreement with experimental data, especially at low 

2 2  
0 0.2 0.4 0.6 

cxto p / c m 3  

Fig. 5. Osmotic pressure results for 98,400 an PS in chlorobenzene." 
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Fig. 6. Osmotic pressure results for 97,300 n,, PS in dioxane." 

concentration.llJg The Fixman method appears to be more complex to use than 
the present procedure, since it requires prior knowledge of the experimental data 
for estimation of certain parameters in the calculations. 

The theory presented here is obviously not completely rigorous. The ex- 
pression for A; in eq. (3) is based on a derivation2 which applies only to infinitely 
dilute suspensions, while the Rudin model gives the change in equivalent hy- 
drodynamic volume of a solvated polymer molecule with finite concentration. 
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TABLE I 
Mark-Houwink Constants 

Temp., K ,  
Polymer Solvent "C x 103cmYg a 

Poly(methy1 methacrylate)n Acetone 30 7.7 0.70 

Polystyreneb (PS) Toluene 25 17.0 0.69 
PS  Methyl ethyl ketone 25 19.5 0.635 
PS C hlorobenzene 25 7.4 0.749 
PS Dioxane 25 15.0 0.694 
Polvisobutylenec(PIB) Cyclohexane 30 26.3 0.69 

(PMMA) 

Ref. 

10 

13 
14 
15 
16 
17 

The polymer molecule is regarded as an impermeable sphere, and this is also not 
true in reality. The scaling factor 1 - ([q]~/[q]) likely compensates in some way 
for the use of Rudin's model for finite concentration behavior with Zimm's 
relation for infinite dilution. The introduction of such a scaling factor is not 
without precedent; the temperature dependence of excluded volume parameters 
is adjusted by similar factors in terms of theta and actual solution tempera- 
tures.20 

The method reported here can also be modified directly to estimate turbidities 
of polymer solutions from 

_--  - (1 + A i m , ~ ) ~  Hc 
7 Xw 

where H is an optical constant and r is the solution turbidity at  zero viewing 
angle. We have not been able to find suitable tabulated light scattering data 
for such calculations, however. The published results are all reported graphi- 
cally, to the best of our knowledge, and a comparison between such values and 
predicted reduced turbidities is not likely to be meaningful. 

In Figures 1 to 7, we have also indicated the values of c, calculated from eq. 
(2). For the purpose of estimating the conventional second virial coefficient, 
we have used 0.5~~ as the concentration limit. It can be seen that the range of 
T / C  up to this concentration limit is well within the range of 3(n/c)o, with which 
there is good agreement with experimental data. We have examined over 140 
sets of experimental data and calculated their second virial coefficients. These 
calculations, together with those obtained using various two-parameter theories, 
are being reported separately.21 

This work was supported in part by the National Science and Engineering Council of Canada. 
The authors thank S. Goldman for helpful discussions. 
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